Lesson 024 Method of Moments Estimation Friday, November 3

Procedures for Generating Estimators

- We know what an estimator (and estimate) is, we
- Strategy 1: use what seems reasonable.
 - If we want a mean, use a mean.
- Strategy 2: Maximum likelihood estimation.
- Strategy 3: Method of Moments Estimators

know how to compare estimators, we understand bias and variance ... how do we find estimators?

Method of Moments: Population

- Recall the expectation of a random variable
- This is also called the first moment.

$$\mu_k = E[X^k]$$

 $\mu = E[X] = \int_{-\infty}^{\infty} xf(x)dx$

• For integer k, we can define the kth moment analogously

 $= \int x^k f(x) dx$

Moments: Example

Moments: Example, continued

- Recall that $var(X) = E[X^2] E[X]^2$.
- Then $E[X^2] = var(X) + E[X]^2$
- For $X \sim N(\mu, \sigma^2)$ we have $E[X^2] = \sigma^2 + \mu^2$.

${\sf I}$ If $X\sim { m Poi}(\lambda)$, what are the first two population moments for X?

$$\mu_1 = \lambda$$
 and $\mu_2 = \lambda$.

$$\mu_1=\lambda$$
 and $\mu_2=\lambda+\lambda^2$.

$$\mu_1=\lambda$$
 and $\mu_2=\lambda-\lambda^2$.

$$\mu_1 = \lambda^2$$
 and $\mu_2 = \lambda^2$.

What is the second moment of a binomial distribution with parameters $m{n}$ and p?

$$np(1-p)$$

np

$$(np)^2(1-p)$$

np[(1-p)+np]

Method of Moments: Population

- Generally μ_k is going to be a function of the unknown parameter(s), θ .
 - Sometimes, some moments will be constants instead.
 - These are still called moments, but are less useful for us.

Method of Moments: Sample

- Suppose that we have a sample, $\{x_1, \ldots, x_n\}$.
- We have seen the sample mean as analogous to the population mean.

What if we generalized this the same way?

 $\overline{\chi} =$

$$\frac{1}{n} \sum_{i=1}^{n} x_i$$

Method of Moments: Sample

• For the kth sample moment, we take the sample mean of x^k .

to each of these.

 $\widehat{\mu}_k = \frac{1}{n} \sum_{i=1}^n x_i^k$

With a given sample, numeric values can be assigned

Sample Moments: Example

- Suppose that we observe $\{-1, -1, 0, 0, 1, 1\}$.
- We can find the first two sample moments:

Suppose you observe $\{-2,0,3\}.$ What is the second sample moment?

$$\frac{1}{3} \left[(-2)^2 + 0^2 + 3^2 \right]$$

$$\frac{1}{3} \left[(-2 - \frac{1}{3})^2 + (0 - \frac{1}{3})^2 + (3 - \frac{1}{3})^2 \right]$$

$$\frac{1}{3} \left[(-2) + 0 + 3 \right]$$

$$\frac{1}{2} \left[(-2 - \frac{1}{3})^2 + (0 - \frac{1}{3})^2 + (3 - \frac{1}{3})^2 \right]$$

Method of Moments Estimators

- Suppose we want to estimate $\Theta = (\theta_1, ..., \theta_L)$.
- Step 1: compute the population moments until you have *L* available equations.
- Step 2: equate the corresponding sample moments, $\hat{\mu}_j$ with the population moments, $\mu_j(\Theta)$.
- Step 3: solve the equations for Θ .

Method of Moments: Example

- What are the method of moments estimators for $\Theta = (\mu, \sigma^2)$ from a $N(\mu, \sigma^2)$ distribution?
- $\mu_1 = \mu$ and $\mu_2 = \sigma^2 + \mu^2$.
- Thus we set $\hat{\mu}_1 = \mu$ and $\hat{\mu}_2 = \sigma^2 + \mu^2$.
- Solving gives $\mu = \hat{\mu}_1$ and $\sigma^2 = \hat{\mu}_2 \hat{\mu}_1^2$.

• Solving gives $\mu = \hat{\mu}_1$ and $\sigma^2 = \hat{\mu}_2 - \hat{\mu}_1^2$.

Method of Moments: Example, Continued $\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$ $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$

moments estimate for σ^2 ?

Suppose you have a normal population with unknown mean and variance. If your sample mean from n=10 is calculated to be 2 and your sample variance is 4, what is the method of

Suppose that $X \sim ext{Exp}(\lambda)$. A sample of size 50 gives a sample mean of 10. What is the method of moments estimate for λ ?

Method of Moments Estimators: Key Points Generally speaking, method of moments estimators

- will be biased.
 - For instance, $\widehat{\sigma}^2$.
- If population moments do not exist, method of moments estimators cannot be found.
- is not ideal.

 Sometimes, the method of moments estimators will produce impossible values for the parameters. This